next up previous
Next: get_al_be_erosion.m Up: Wrapper scripts and control Previous: al_be_erosion_many.m

get_al_be_age.m

results = get_al_be_age(sample,consts,nuclide)

This is the main control function that carries out the exposure age calculation. al_be_age_one and
al_be_age_many call it.

The argument sample is a structure containing sample information. The fields are as follows:

sample.sample_name Sample name string
sample.lat Latitude double
sample.long Longitude double
sample.elv elevation in meters double
sample.pressure pressure in hPa (optional if sample.elv is set) double
sample.aa Flag that indicates how to interpret the elevation value. string
sample.thick Sample thickness in cm double
sample.rho Sample density, g $ \cdot$ cm$ ^{-3}$ double
sample.othercorr Shielding correction. double
sample.E Erosion rate, cm $ \cdot$ yr$ ^{-1}$ double
sample.N10 $ ^{10}$Be concentration, atoms $ \cdot$ g $ ^{-1} \cdot$ yr$ ^{-1}$ double
sample.delN10 standard error of $ ^{10}$Be concentration double
sample.N26 $ ^{26}$Al concentration, atoms $ \cdot$ g $ ^{-1} \cdot$ yr$ ^{-1}$ double
sample.delN26 standard error of $ ^{26}$Al concentration double

The argument consts is a structure containing the constants. It is typically the structure created by
make_al_be_consts_v12.m, although only a subset of the fields in that structure are actually used by this function.

The argument nuclide tells the function which nuclide is being used; allowed values are 10 or 26. This is a numerical value, not a string.

This function returns a structure called results that contains the following fields:

results.main_version Version number for this function string
results.simplet Exposure age (yr) double
results.delt_int Internal uncertainty (yr) double
results.delt_ext External uncertainty (yr) double
results.thick_sf Thickness correction double
results.simple_sf Geographic scaling factor double
results.Psp Thickness-integrated surface production rate due to spallation double
results.Pmu Thickness-integrated surface production rate due to muons double

The exposure age calculation goes as follows:

Calculate the thickness scaling factor $ S_{thick}$ by calling the function thickness.m.

If sample.pressure is not set, calculate it by calling either stdatm.m or antatm.m.

Calculate the geographic scaling factor $ S_{i,geo}$ for nuclide $ i$ by calling the function stone2000.m.

The production rate of nuclide $ i$ in the sample $ P_{i}$ (atoms $ \cdot$ g $ ^{-1} \cdot$ yr$ ^{-1}$) is :

$\displaystyle P_{i} = P_{i,ref} * S_{thick} * S_{T} * S_{i,geo}$ (5)

where $ P_{i,ref}$ is the reference production rate for nuclide $ i$ and $ S_{T}$ is the topographic shielding correction.

The exposure age $ t_{i}$ for nuclide $ i$ is then:

$\displaystyle t_{i} = \frac{1}{\lambda_{i}+\frac{\rho \epsilon}{\Lambda_{sp}}} ...
...{P_{i}} \left( \lambda_{i}+\frac{\rho \epsilon}{\Lambda_{sp}} \right) \right] }$ (6)

where $ N_{i}$ is the measured concentration of nuclide $ i$ (atoms $ \cdot$ g$ ^{-1}$), $ \epsilon$ is the erosion rate (g $ \cdot$ cm $ ^{-2} \cdot$ yr$ ^{-1}$), $ \lambda_{i}$ is the decay constant for nuclide $ i$ (yr$ ^{-1}$), $ \rho$ is the sample density (g $ \cdot$ cm$ ^{-3}$), and $ \Lambda_{sp}$ is the effective attenuation length for prodution by neutron spallation.

The internal uncertainty in the exposure age $ \sigma_{int}t_{i}$ is:

$\displaystyle \left( \sigma_{int}t_{i} \right)^{2} = \left( \frac{\partial t_{i}}{\partial N_{i}} \right) ^{2} \sigma N_{i}^{2}$ (7)

where $ \sigma N_{i}$ is the standard error in the measured nuclide concentration and:

$\displaystyle \frac{\partial t_{i}}{\partial N_{i}} = \left[ P_{i} - N_{i} \left( \lambda_{i}+\frac{\rho \epsilon}{\Lambda_{sp}} \right) \right]^{-1}$ (8)

The external uncertainty in the exposure age $ \sigma_{ext}t_{i}$ is:

$\displaystyle \left( \sigma_{ext}t_{i} \right)^{2} = \left( \frac{\partial t_{i...
...^{2} + \left( \frac{\partial t_{i}}{\partial P_{i}}\right)^{2} \sigma P_{i}^{2}$ (9)

where

$\displaystyle \frac{\partial t_{i}}{\partial P_{i}} = -N_{i} \left[ P_{i}^{2} -...
..._{i} \left( \lambda_{i}+\frac{\rho \epsilon}{\Lambda_{sp}} \right) \right]^{-1}$ (10)

$\displaystyle \sigma P_{i} = \sigma P_{i,ref} * S_{thick} * S_{T} * S_{i,geo}$ (11)

and $ \sigma P_{i,ref}$ is the standard error in the reference production rate of nuclide $ i$.


next up previous
Next: get_al_be_erosion.m Up: Wrapper scripts and control Previous: al_be_erosion_many.m
2006-05-08