next up previous contents
Next: dunai2001sp.m Up: Subsidiary calculation functions Previous: d2r.m   Contents

desilets2006sp.m

Syntax:

scalingfactor = desilets2006sp(h,Rc)

Calculates the geographic scaling factor for cosmogenic-nuclide production for particular cutoff rigidity and atmospheric pressure according to the scheme in:

Desilets D., Zreda M., Prabu T., 2006. Extended scaling factors for in situ cosmogenic nuclides: New measurements at low latitude. Earth and Planetary Science Letters, v. 246, pp. 265-276.

The input arguments are h, atmospheric pressure (hPa), and Rc, cutoff rigidity (GV). Accepts vector arguments.

This function:

Converts atmospheric pressure $ h$ (hPa) to atmospheric depth $ x$ (g $ \cdot$ cm$ ^{-2}$) by $ x = 1.0197 h$.

Assigns cutoff rigidities below 2 GV a value of 2 GV.

Obtains the effective attenuation length in air $ \Lambda_{eff,sp}$ via Equation (4) in the source paper:

$\displaystyle \Lambda_{eff,sp} = \frac{1033-x}{g(1033,R_{C}) - g(x,R_{C})}$ (26)

where $ R_{C}$ is the cutoff rigidity (GV) and the function $ g(x,R_{C})$ is:


$\displaystyle g(x,R_{C}) =$   $\displaystyle n\left[ 1 + \exp{\left(-\alpha R_{C}^{-k} \right)} \right]^{-1}x$ (27)
$\displaystyle +$   $\displaystyle \frac{1}{2} \left[ a_{0} + a_{1}R_{C} + a_{2}R_{C}^2\right] x^{2}$ (28)
$\displaystyle +$   $\displaystyle \frac{1}{3} \left[ a_{3} + a_{4}R_{C} + a_{5}R_{C}^2\right] x^{3}$ (29)
$\displaystyle +$   $\displaystyle \frac{1}{5} \left[ a_{6} + a_{7}R_{C} + a_{8}R_{C}^2\right] x^{4}$ (30)

given constants:

$ n$ $ 1.0177 \times 10^{-2}$
$ \alpha$ $ 1.0207 \times 10^{-1}$
$ k$ $ -3.9527 \times 10^{-1}$
$ a_{0}$ $ 8.5236 \times 10^{-6}$
$ a_{1}$ $ -6.3670 \times 10^{-7}$
$ a_{2}$ $ -7.0814 \times 10^{-9}$
$ a_{3}$ $ -9.9182 \times 10^{-9}$
$ a_{4}$ $ 9.9250 \times 10^{-10}$
$ a_{5}$ $ 2.4925 \times 10^{-11}$
$ a_{6}$ $ 3.8615 \times 10^{-12}$
$ a_{7}$ $ -4.8194 \times 10^{-13}$
$ a_{8}$ $ -1.5371 \times 10^{-14}$

Obtains the altitude scaling factor $ S_{alt}$:

$\displaystyle S_{alt} = \exp{\left( \frac{1033-x}{\Lambda_{eff,sp}} \right)}$ (31)

Obtains the latitude scaling factor $ S_{lat}$ via Equation (6) in the source paper:

$\displaystyle S_{lat} = 1 - \exp{\left( -\alpha R_{C}^{-k} \right) }$ (32)

where $ R_{C}$ is the cutoff rigidity, $ \alpha = 10.275$, and $ k = 0.9615$.

Finally, obtains the total scaling factor $ S = S_{alt}S_{lat}$.

Accepts either scalars or vectors of equal sizes for all the input arguments. Returns either a scalar or a vector of the appropriate size.


next up previous contents
Next: dunai2001sp.m Up: Subsidiary calculation functions Previous: d2r.m   Contents
2007-11-13